34 research outputs found

    Field-Induced Magnetic Order in Quantum Spin Liquids

    Full text link
    We study magnetic field-induced three-dimensional ordering transitions in low-dimensional quantum spin liquids, such as weakly coupled, antiferromagnetic spin-1/2 Heisenberg dimers and ladders. Using stochastic series expansion quantum Monte Carlo simulations, thermodynamic response functions are obtained down to ultra-low temperatures. We extract the critical scaling exponents which dictate the power-law dependence of the transition temperature on the applied magnetic field. These are compared with recent experiments on candidate materials and with predictions for the Bose-Einstein condensation of magnons obtained in mean-field theory.Comment: RevTex, 4 pages with 5 figure

    The Magnetic Spin Ladder (C_{5}H_{12}N)_{2}CuBr_{4}: High Field Magnetization and Scaling Near Quantum Criticality

    Full text link
    The magnetization, M(H30M(H \leq 30 T, 0.7 K T300\leq T \leq 300 K), from single crystals and powder samples of (C5_{5}H12_{12}N)2_{2}CuBr4_{4} has been used to identify this system as an S=1/2S=1/2 Heisenberg two-leg ladder in the strong coupling limit, J=13.3J_{\perp} = 13.3 K and J=3.8J_{\parallel} = 3.8 K, with Hc1=6.6H_{c1} = 6.6 T and Hc2=14.6H_{c2} = 14.6 T. An inflection point in M(H,T=0.7M(H, T = 0.7 K) at half-saturation, Ms/2M_{s}/2, is described by an effective \emph{XXZ} chain. The data exhibit universal scaling behavior in the vicinity of Hc1H_{c1} and Hc2H_{c2}, indicating the system is near a quantum critical point.Comment: 4 pages, 4 figure

    Lipid-gramicidin interactions using two-dimensional Fourier-transform electron spin resonance.

    Get PDF
    The application of two-dimensional Fourier-transform electron-spin-resonance (2D-FT-ESR) to the study of lipid/gramicidin A (GA) interactions is reported. It is shown that 2D-FT-ESR spectra provide substantially enhanced spectral resolution to changes in the dynamics and ordering of the bulk lipids (as compared with cw-ESR spectra), that result from addition of GA to membrane vesicles of dipalmitoylphosphatidylcholine (DPPC) in excess water containing 16-PC as the lipid spin label. The agreement between the theory of Lee, Budil, and Freed and experimental results is very good in the liquid crystalline phase. Both the rotational and translational diffusion rates of the bulk lipid are substantially decreased by addition of GA, whereas the ordering is only slightly increased, for a 1:5 ratio of GA to lipid. The slowing effect on the diffusive rates of adding GA in the gel phase is less pronounced. It is suggested that the spectral fits in this phase would be improved with a more detailed dynamic model. No significant evidence is found in the 2D-FT-ESR spectra for a second immobilized component upon addition of GA, which is in contrast to cw-ESR. It is shown from simulations of the observed 2D-FT-ESR spectra that the additional component seen in cw-ESR spectra, and usually attributed to "immobilized" lipid, is inconsistent with its being characterized by increased ordering, according to a model proposed by Ge and Freed, but it would be consistent with the more conventional model of a significantly reduced diffusional rate. This is because the 2D-FT-ESR spectra exhibit a selectivity, favoring components with longer homogeneous relaxation times, T2. The homogeneous linewidths of the 2D-FT-ESR autopeaks appear to broaden as a function of mixing time. This apparent broadening is very likely due to the process of cooperative order director fluctuations (ODF) of the lipids in the vesicle. This real-time observation of ODF is distinct from, but appears in reasonable agreement with, NMR results. It is found that addition of GA to give the 1:5 ratio has only a small effect on the ODF, but there is a significant temperature dependence

    Studies on lipid membranes by two-dimensional Fourier transform ESR: Enhancement of resolution to ordering and dynamics.

    Get PDF
    The first two-dimensional Fourier-transform electron spin resonance (2D-FT-ESR) studies of nitroxide-labeled lipids in membrane vesicles are reported. The considerable enhancement this experiment provides for extracting rotational and translational diffusion rates, as well as orientational ordering parameters by means of ESR spectroscopy, is demonstrated. The 2D spectral analysis is achieved using theoretical simulations that are fit to experiments by an efficient and automated nonlinear least squares approach. These methods are applied to dispersions of 1-palmitoyl-2oleoyl-sn-glycerophosphatidylcholine (POPC) model membranes utilizing spin labels 1-palmitoyl-2-(16-doxyl stearoyl) phosphatidylcholine and the 3-doxyl derivative of cholestan-3-one (CSL). Generally favorable agreement is obtained between the results obtained by 2D-FT-ESR on vesicles with the previous results on similar systems studied by continuous wave (cw) ESR on aligned samples. The precision in determining the dynamic and ordering parameters is significantly better for 2D-FT-ESR, even though the cw ESR spectra from membrane vesicles are resolved more poorly than those from well aligned samples. Some small differences in results by the two methods are discussed in terms of limitations of the methods and/or theoretical models, as well as possible differences between dynamic molecular structure in vesicles versus aligned membranes. An interesting observation with CSL/POPC, that the apparent homogeneous linewidths seem to increase in "real time," is tentatively attributed to the effects of slow director fluctuations in the membrane vesicles

    Structural and Magnetic Properties of Dimorpholinium Hexahalodicuprate(II) Salts: Study of two Planar Cu2X62- Dimers

    No full text
    The chloride and bromide analogues of the title compound were synthesized, and the X-ray crystal structure of the former compound was determined. Magnetic susceptibility and EPR studies were carried out on both compounds. The crystal structure of the chloride salt yielded a triclinic structure, space group P̅1, with a = 7.414 (2) Å,b = 8.686 (2) Å, c = 14.766 (4) Å, α = 79.16 (2)°, β = 82.20 (2)°, γ = 74.19 (2)°, Z = 2, dcalcd = 1.94 g/cm3, and R = 0.0527. The structure consists of isolated planar dimers with each copper atom semicoordinated to two oxygen atoms in what may be described, on the average, as a 4+2 elongated octahedral geometry. The magnetic exchange interaction in the two compounds is predominantly antiferromagnetic with a singlet-triplet splitting energy of J/k = -43.5 (1) K for the chloride and J/k = -131 (2) K for the bromide. EPR and magnetic studies on both compounds indicate that magnetically these compounds are not isolated dimers. EPR studies supplement both the structural and magnetic studies. © 1988, American Chemical Society. All rights reserved
    corecore